THE INFLUENCE OF THE OXIDIZING NUCLEOPHILE ON STEREOCHEMISTRY IN THE ALKALINE EPOXIDATION OF α_{β} -UNSATURED SULFONES

Ruggero Curci* and Fulvio DiFuria

Centro CNR di Studio di Meccanismi di Reazioni Organiche, Istituto di Chimica Organica, University of Padova, 35100 Padova, Italy

(Received in UK 26 September 1974; accepted for publication 10 October 1974)

The epoxidation of α,β -unsatured carbonyl compounds by hydrogen peroxide in alkaline media is known to be non-stereospecific, yielding the same epoxide from either stereoisomeric reactant.^{1,2} Alkaline epoxidation of α,β -unsatured sulfones show similar features, as it was reported that treatment of *cis*-1-phenyl-2-(*p*-tolylsulfonyl)ethene <u>1</u> or of its *trans*-isomer <u>1</u>' with alkaline hydrogen peroxide in aqueous acetone at 45° affords *trans*-epoxysulfone <u>4</u>.³

Apparently, under these conditions (in the Scheme, Z = HO-), the initially formed carbanion adduct $\underline{2}$ has sufficient lifetime to undergo $C_{\alpha} - C_{\beta}$ rotational equilibration with the intermediate $\underline{2}$ ', yielding the thermodynamically more stable epoxide $\underline{4}$. Thus, high stereoselectivity is observed.

We now report that the reaction of 1 with Clo⁻ in aqueous dioxan results in the exclusive formation of *cis*-epoxysulfone 3. The following procedure is representative: to a solution of 0.5 g (1.9 mmol) of 1 dissolved in a mixture of 30 ml dioxan and 8 ml water, 7 ml of 0.62 M KOCl aqueous alkaline solution are added over a period of 3-4 min. (excess oxidant is used due to competing autodecomposition⁴); the reaction solution is kept at 40° for ~ 1 hr., while the apparent ⁵ pH is kept constant at 13.5 using a pH-stat. The reaction mixture is then poured into water and the precipitate collected giving 0.48 g of product mp 99-104°; pmr spectra show this material to be epoxide 3, accompanied only by some unreacted 1. Crystallization from CCl_4/n -hexame gives 0.40 g (1.53 mmol, yield > 80%) of pure epoxysulfone $\underline{3}$: mp 109-110°; ir (CHCl₃) 1330, 1152 (SO₂ strech), and 908 cm⁻¹(epoxide C-0 strech); pmr (acetone- d_6) τ 7.59 (3, s, ArCH₃), 5.48 (2, HC=CH AB system, J = 3.9 Hz, H_a 5.43, H_b 5.53), and 2.49-2.73 ppm (9, complex m, ArH). The value of the H_aH_b coupling constant leaves no doubt concerning the *cis* configuration ⁶ of this previously unreported epoxide, J_{HaHb} being 1.5 Hz for the corresponding *trans* compound.³ Thus, epoxidation of <u>1</u> by ClO⁻ appears to be completely stereospecific. When the epoxidation of <u>1</u> is carried out with *m*-chloroperoxybenzoic acid (MCPBA) in alkaline (pH_{app} = 14) dioxan-water 2:1 at 40°, the pmr spectra of the *trans* isomer. By way of contrast, the reaction of <u>1</u> with hydrogen peroxide or with *t*-butyl hydroperoxide in the same alkaline medium at 40° gives predominantly the *trans*-epoxide, as both <u>3</u> and <u>4</u> are produced in the ratio of *ca*. 1:9. Independent experiments verified that epimerization of diastereoisomeric epoxides <u>3</u> and <u>4</u> does not occur in the conditions adopted for epoxidation.

The stereochemistry of epoxidation of $\underline{1}$ seems then to depend upon the nature of the epoxidizing nucleophile. In fact, on going from *t*-Bu00⁻ and H00⁻ to *m*-ClC₆H₄CO₃⁻ to Cl0⁻, the reaction proceeds from being highly stereoselective to completely stereospecific. Examining the adopted mechanism (Scheme), these findings might be rationalized : indeed, the leaving group ability is expected to increase in the order *t*-Bu0⁻ H0⁻ < *m*-ClC₆H₄CO₂⁻ < Cl⁻; clearly, as the efficiency of the leaving group is enhanced, expulsion of Z⁻ from intermediate $\underline{2}$ can compete favorably with rotation, leading to epoxide $\underline{3}$.

These findings might have useful synthetic implications. In fact, 'electrophilic' epoxidation (which is stereospecific) of alkenes carrying substituents capable of conjugation with the C=C bond by peroxyacids is often difficult.¹ For example, our attempts to epoxidize $\underline{1}$ in CHCl₃ with excess MCPBA or with CF₃CO₃H (a powerful oxidant)² have failed.

We thank prof.s G. Berti and G. Modena for discussions, and Mr. R. Salmaso for assistance in taking pmr spectra.

REFERENCES

- 1. G. Berti, Top. Stereochem., 7, 93 (1972); see also references therein .
- R. Curci and J. O. Edwards, in 'Organic Peroxides,' D. Swern, Ed., Wiley-Interscience, New York, 1970, vol I, ch 4; see also references.
- 3. B. Zwanenburg and J. terWiel, Tetrahedron Lett., 935 (1970) .
- 4. S. K. Chakrabartty and H. O. Kretschmer, J. C. S. Perkin I, 222 (1974).
- 5. H. M. N. Irving and U. S. Mahnot, J. Inorg. Nucl. Chem., <u>30</u>, 1215 (1968) .
- 6. G. G. Lyle and L. K. Keefer, J. Org. Chem., <u>31</u>, 3921 (1966) .